Centrifugal Pump Data Worksheet

Complete worksheet then email to technicalsupport@munropump.com. We will respond to you with a recommended solution.

Name:	Company:	Phone:
Address:		Email:

۲ ۲	Pumping Requirements To size a pump, first figure total maximum flow rate in gallons needed. (For example: Irrigation system, household usage, etc.)		GPM
	Suction Lift (not applicable in a booster application) To determine suction lift, measure the vertical distance between the water level at the lowest point and the pump inlet. (Total measurement in feet)	FE	ET
1	Elevation Change To figure elevation, measure the vertical distance from the pump inlet to the highest point in the system. (Total measurement in feet)	FE	ET
	Friction Loss Refer to friction loss charts to determine the optimal pipe size. Pipe Size: Consult each "Velocity Ft Per Second" column at system GPM to locate a maximum of 5'. Friction Loss: Determine "Loss per 100 ft" at system GPM by pipe material. Complete the following calculation.	FE	ET
	Length of mainline pipe/100 = units of loss Loss per 100' x units of loss = total friction loss		
2	PSI - Pounds Per Square Inch IF Booster Application: (PSI required at the end of the largest zone incoming PSI) x 2.31 = Feet IF Suction Lift Application: PSI required at the end of the largest zone x 2.31 = Feet.	FE	ET

Total Dynamic Head (TDH)

Total the sum of suction lift, elevation change, friction loss, PSI. This total equals TDH in feet.

□Pump in Well

5	Electrical Power Available at Pump Location					Filtration	Alternate Methods to Power Pump	
pec	Voltage:	115 Volt	208 Volt	230 Volt	460 Volt	□ Suction	□Gasoline Engine	
s	Phase:	□Single Phase	□ Three Pl	nase		Discharge	□ Diesel Engine	
0	Water Source							

Harvested Water

□Incoming Pressure _

psi

Flooded Suction

Water Source

(Boost application not shown)

TDH